Examples of Best Discrete l_1 and l_2 Rational Approximations*

W. FRASER⁺

University of Guelph, Guelph, Ontario. Canada N1G 2W1 Communicated by E. W. Cheney Received January 14, 1978

If r(x) is a rational function which approximates a function f given at data points $x_1 < \cdots < x_m$, call it a best l_1 approximation if it provides a local minimum of $\sum_{i=1}^{m} |r(x_i) - f(x_i)|$, and a best l_2 approximation if it provides a local minimum of $\sum_{i=1}^{m} [r(x_i) - f(x_i)]^2$. Let R_{pq} denote the class of rational functions with numerators of degree $\leq p$, and denominators $(=0 \text{ on } [x_1, x_m])$ of degree $\leq q$. A function r(x) in R_{pq} is degenerate in R_{pq} if it also belongs to $R_{p-k,q-k}$ for some k > 0.

A theory for discrete rational l_1 and l_2 approximations is given by Dunham in [1-3], including conditions under which degenerate approximations can be best. However, Dunham failed to give any example of best approximation except for one where 0 is a best L_1 approximation [1, p. 310]. The author gives here an example of nonuniqueness in l_1 (Example 1), an example in l_1 with a nonzero degenerate best approximation (Example 2), and an example in l_2 with the proper number of sign changes (Example 2). These examples should be invaluable in testing algorithms for l_1 and l_2 approximations.

EXAMPLE 1. Given the following data, look for a best l_1 approximation by a function of the form $r(x) = (a_0 + a_1 x)/(1 + b_1 x)$:

X	0	1	2	3
f	2	1	1	0

Since in this case it is possible to find a function of the class which interpolates the data in three points, one such interpolant, r(x) = (6 - 2x)/(3 + x) is tested to see if it provides a minimum. The constant in the denominator is taken to be 3 to permit all coefficients to be integers.

^{*} Prepared for publication by C. B. Dunham, Computer Science Department, University of Western Ontario, London, Ontario N6A 5B9, Canada.

[†] Deceased.

To carry out the test, let

$$\tilde{r}(x) = \frac{(6 + \Delta a_0) - (2 + \Delta a_1)x}{3 + (1 + \Delta b_1)x},$$

 $\tilde{E}(x) = \tilde{r}(x) - f(x)$ and E(x) = r(x) - f(x), and record $\tilde{E} = E + (\tilde{r} - r)$ at the data points.

$$\begin{array}{cccc} x & E \\ \hline 0 & \frac{\Delta a_0}{3} \\ 1 & \frac{\Delta a_0 - \Delta a_1 - \Delta b_1}{4 + \Delta b_1} \\ 2 & \frac{\Delta a_0 - 2\Delta a_1 - \frac{4}{5}\Delta b_1}{5 + 2\Delta b_1} \\ 3 & \frac{\Delta a_0 - 3\Delta a_1}{6 + 3\Delta b_1} \end{array}$$

There will be a minimum at r(x) = (6 - 2x)/(3 + x) if for all sufficiently small but otherwise arbitrary choices of Δa_0 , Δa_1 , Δb_1 , the inequality

$$\left|\frac{\varDelta a_0}{3}\right| + \left|\frac{\varDelta a_0 - \varDelta a_1 - \varDelta b_1}{4 + \varDelta b_1}\right| + \left|\frac{\varDelta a_0 - 3\varDelta a_1}{6 + 3\varDelta b_1}\right|$$
$$> \left|\frac{\varDelta a_0 - 2\varDelta a_1 - \frac{4}{5}\varDelta b_1}{5 + 2\varDelta b_1}\right|$$

is satisfied. Given $\epsilon > 0$, if Δb_1 is chosen to satisfy $|\Delta b_1| < \epsilon$, it will be sufficient to show that

$$\frac{1}{1+\epsilon} \left[\left| \frac{\Delta a_0}{3} \right| + \left| \frac{\Delta a_0 - \Delta a_1 - \Delta b_1}{4} \right| + \left| \frac{\Delta a_0 - 3\Delta a_1}{6} \right| \right]$$
$$> \frac{1}{1-\epsilon} \left| \frac{\Delta a_0 - 2\Delta a_1 - \frac{4}{5}\Delta b_1}{5} \right|.$$

A small computation gives

$$\frac{\frac{1}{5} \left(\Delta a_0 - 2\Delta a_1 - \frac{4}{5} \Delta b_1 \right)}{= -\frac{3}{25} \left(\frac{\Delta a_0}{3} \right) + \frac{16}{25} \left(\frac{\Delta a_0 - \Delta a_1 - \Delta b_1}{4} \right) + \frac{12}{25} \left(\frac{\Delta a_0 - 3\Delta a_1}{6} \right).$$

Therefore,

$$\left| \frac{\Delta a_{6} - 2\Delta a_{1} - \frac{4}{5}\Delta b_{1}}{5} \right|$$

$$\leq \frac{3}{25} \left| \frac{\Delta a_{0}}{3} \right| + \frac{16}{25} \left| \frac{\Delta a_{0} - \Delta a_{1} - \Delta b_{1}}{4} \right| + \frac{12}{25} \left| \frac{\Delta a_{0} - 3\Delta a_{1}}{6} \right|$$

$$< \frac{16}{25} \left[\left| \frac{\Delta a_{0}}{3} \right| + \left| \frac{\Delta a_{0} - \Delta a_{1} - \Delta b_{1}}{4} \right| + \left| \frac{\Delta a_{0} - 3\Delta a_{1}}{5} \right| \right].$$

Since for small ϵ , $16/25 \cdot (1 + \epsilon)/(1 - \epsilon) < 1$, the required inequality is satisfied and r(x) = (6 - 2x)/(3 + x) is a best l_1 approximation. However, r(x) is not unique since $\tilde{r}(x) = (12 - 4x)/(6 - x)$ also provides a minimum.

The final example provides both a degenerate best rational l_1 approximation and a best rational least-squares approximation which does not interpolate the approximated function at any point, although it has the required number of sign changes.

EXAMPLE 2. Given the following data, find best l_1 and l_2 approximations by functions of the form $r(x) = (a_0 + a_1 x)/(1 + b_1 x)$:

x	0	1	2	3
f	1	2	0	1

Consider first the l_1 approximation. The degenerate member r(x) = 1 of the class R_{11} interpolates f at the two end points, and is a candidate for a minimum. Retaining previously used notation, with

$$\tilde{r}(x) = \frac{1 + \Delta a_0 + \Delta a_1 x}{1 + \Delta b_1 x},$$

construct the table

The function being tested is a minimum if for all sufficiently small Δa_0 , Δa_1 , Δb_1 ,

$$\Big|\frac{\varDelta a_0 + 2\varDelta a_1 - 2\varDelta b_1}{1 + 2\varDelta b_1} - \frac{\varDelta a_0 - \varDelta a_1 - \varDelta b_1}{1 + \varDelta b_1}\Big|$$
$$\leqslant |\varDelta a_0| + \Big|\frac{\varDelta a_0 + 3\varDelta a_1 - 3\varDelta b_1}{1 + 3\varDelta b_1}\Big|.$$

Choose Δb_1 so that $|\Delta b_1| < 1/10$. Then

$$\begin{split} \left| \frac{\Delta a_{0} + 2\Delta a_{1} - 2\Delta b_{1}}{1 + 2\Delta b_{1}} - \frac{\Delta a_{0} + \Delta a_{1} - \Delta b_{1}}{1 + \Delta b_{1}} \right| \\ &= \frac{|\Delta a_{1} - \Delta b_{1} - \Delta a_{0} \Delta b_{1}|}{|1 + 2\Delta b_{1}| \cdot |1 + \Delta b_{1}|} \\ &< 3 \cdot \frac{|1 + 2\Delta b_{1}| \cdot |1 + \Delta b_{1}|}{|1 + 3\Delta b_{1}|} \cdot \frac{|\Delta a_{1} - \Delta b_{1} - \Delta a_{0} \Delta b_{1}|}{|1 + 2\Delta b_{1}| \cdot |1 + \Delta b_{1}|} \\ &= \frac{3|\Delta a_{1} - \Delta b_{1} - \Delta a_{0} \Delta b_{1}|}{|1 + 3\Delta b_{1}|} = \left| \frac{\Delta a_{0} + 3\Delta a_{1} - 3\Delta b_{1}}{1 + 3\Delta b_{1}} - \Delta a_{0} \right| \\ &\leqslant \left| \frac{\Delta a_{0} + 3\Delta a_{1} - 3\Delta b_{1}}{1 + 3\Delta b_{1}} \right| + |\Delta a_{0}|. \end{split}$$

The inequality of the test is satisfied and thus r(x) = 1 is a local minimum which provides an example of a degenerate best rational l_1 approximation.

The least-squares problem for the same data is that of finding $r(x) = (a_0 + a_1 x)/(1 + b_1 x)$ which minimizes $S = \sum_i (r_i - f_i)^2$. The equations which must be satisfied by a_0 , a_1 , b_1 in this case are

(i)
$$\sum_{i} 2\left[\frac{a_{0} + a_{1}x_{i}}{1 + b_{1}x_{i}} - f_{i}\right] \cdot \left[\frac{1}{1 + b_{1}x_{i}}\right] = 0,$$

(ii) $\sum_{i} 2\left[\frac{a_{0} + a_{1}x_{i}}{1 + b_{1}x_{i}} - f_{i}\right] \cdot \left[\frac{x_{i}}{1 + b_{1}x_{i}}\right] = 0,$
(iii) $\sum_{i} 2\left[\frac{a_{0} + a_{1}x_{i}}{1 + b_{1}x_{i}} - f_{i}\right] \cdot \left[\frac{-x_{i}(a_{0} + a_{1}x_{i})}{(1 + b_{1}x_{i})^{2}}\right] = 0.$

These equations are satisfied by $a_0 = 13/10$, $a_1 = -\frac{1}{5}$ and $b_1 = 0$. The function $r(x) = 13/10 - \frac{1}{5}x$ is a member of the class R_{11} having the following table of values:

RATIONAL APPROXIMATIONS

X	r(x)	f(x)	E(x)	E^2
0	$\frac{13}{10}$	1	$\frac{3}{10}$	$\frac{9}{100}$
1	$\frac{11}{10}$	2	$-\frac{9}{10}$	$\frac{81}{100}$
2	$\frac{9}{10}$	0	$\frac{9}{10}$	$\frac{81}{100}$
3	$\frac{7}{10}$	1	$-\frac{3}{10}$	$\frac{9}{100}\sum E_i^2 = \frac{9}{5}$

The second derivatives required to test this for a minimum have been calculated as follows: $\delta^2 S / \delta a_0^2 = 8$; $\delta^2 S / \delta a_0 \delta a_1 = 12$; $\delta^2 S / \delta a_0 \delta b_1 = -10$; $\delta^2 S / \delta a_1^2 = 28$; $\delta^2 S / \delta a_1 \delta b_1 = -22$; $\delta^2 S / \delta b_1^2 = 19.16$. The matrix

1	8	12	-10 \
1	12	28	-22
\-	-10	-22	19.26/

is positive definite and thus the function r(x) that has been found is a minimum. It does not interpolate f at any point; however, it does have three sign changes.

References

- 1. C. B. DUNHAM, Degeneracy in mean nonlinear approximation, J. Approximation Theory 9 (1973), 307-312.
- 2. C. B. DUNHAM, Best discrete mean rational approximation, Aequationes Math. 11 (1974), 107-110.
- 3. C. B. DUNHAM, Nonlinear mean-square approximation on finite sets, SIAM J. Numer. Anal. 12 (1975), 105-110.
- 4. G. LAMPRECHT, Zur Mehrdeutigkeit bei der Approximationen in der L_p -Norm mit Hilfe rationaler Funktionen, *Computing* 5 (1970), 349–355.