Examples of Best Discrete h_{1} and I_{2} Rational Approximations*

W. Fraser ${ }^{4}$
Unitersity of Guelph, Guelph, Ontario. Canoda N/G $2 W 1$
Communicated by E. W. Cheney:

Received January 14, 1978

If $r(x)$ is a rational function which approximates a function f given at data points $x_{1}<\cdots<x_{m}$, call it a best l_{1} approximation if it provides a local minimum of $\sum_{i=1}^{m} \mid n\left(x_{i}\right)-f\left(x_{i}\right)$, and a best l_{2} approximation if it provides a local minimum of $\sum_{i=1}^{m}\left[r\left(x_{i}\right)-f\left(x_{i}\right)\right]^{2}$. Let $R_{p q}$ denote the class of rational functions with numerators of degree $\leqslant p$, and denominators ($=0$ on $\left[x_{1}, x_{m}\right]$) of degree $\leqslant q$. A function $r(x)$ in $R_{p q}$ is degenerate in $R_{p m}$ if it also belongs to $R_{p-k, q-h}$ for some $k>0$.

A theory for discrete rational l_{1} and l_{2} approximations is given by Dunnam in [1-3], including conditions under which degenerate approximations can be best. However, Dunham failed to give any example of best approximation except for one where 0 is a best L_{1} approximation [1, p. 310]. The author gives here an example of nonuniqueness in l_{1} (Example I), an example in l_{1} with a nonzero degenerate best approximation (Example 2). and an example in l_{2} with the proper number of sign changes (Example 2). These examples should be invaluable in testing algorithms for l_{1} and l_{2} approximations.

Example 1. Given the following data, look for a best l_{1} approximation by a function of the form $r(x)=\left(a_{0}+a_{1} x\right) /\left(1+b_{1} x\right)$:

x	0	1	2	3
f	2	1	1	0

Since in this case it is possible to find a function of the class which interpolates the data in three points, one such interpolant, $r(x)=(6-2 x) /(3+x)$ is tested to see if it provides a minimum. The constant in the denominator is taken to be 3 to permit all coefficients to be integers.

[^0]To carry out the test, let

$$
\tilde{r}(x)=\frac{\left(6+\Delta a_{0}\right)-\left(2+\Delta a_{1}\right) x}{3+\left(1+\Delta b_{1}\right) x}
$$

$\widetilde{E}(x)=\tilde{r}(x)-f(x)$ and $E(x)=r(x)-f(x)$, and record $\tilde{E}=E+(\tilde{r}-r)$ at the data points.

x	E
0	$\frac{\Delta a_{0}}{3}$
1	$\frac{\Delta a_{0}-\Delta a_{1}-\Delta b_{1}}{4+\Delta b_{1}}$
2	$\frac{\Delta a_{0}-2 \Delta a_{1}-\frac{4}{5} \Delta b_{1}}{5+2 \Delta b_{1}}$
3	$\frac{\Delta a_{0}-3 \Delta a_{1}}{6+3 \Delta b_{1}}$

There will be a minimum at $r(x)=(6-2 x) /(3+x)$ if for all sufficiently small but otherwise arbitrary choices of $\Delta a_{0}, \Delta a_{1}, \Delta b_{1}$, the inequality

$$
\begin{aligned}
& \left|\frac{\Delta a_{0}}{3}\right|+\left|\frac{\Delta a_{0}-\Delta a_{1}-\Delta b_{1}}{4+\Delta b_{1}}\right|+\left|\frac{\Delta a_{0}-3 \Delta a_{1}}{6+3 \Delta b_{1}}\right| \\
& \quad>\left|\frac{\Delta a_{0}-2 \Delta a_{1}-\frac{4}{5} \Delta b_{1}}{5+2 \Delta b_{1}}\right|
\end{aligned}
$$

is satisfied. Given $\epsilon>0$, if Δb_{1} is chosen to satisfy $\left|\Delta b_{1}\right|<\epsilon$, it will be sufficient to show that

$$
\begin{aligned}
& \frac{1}{1+\epsilon}\left[\left|\frac{\Delta a_{0}}{3}\right|+\left|\frac{\Delta a_{0}-\Delta a_{1}-\Delta b_{1}}{4}\right|+\left|\frac{\Delta a_{0}-3 \Delta a_{1}}{6}\right|\right] \\
& \quad>\frac{1}{1-\epsilon}\left|\frac{\Delta a_{0}-2 \Delta a_{1}-\frac{4}{5} \Delta b_{1}}{5}\right|
\end{aligned}
$$

A small computation gives

$$
\begin{aligned}
& \frac{1}{5}\left(\Delta a_{0}-2 \Delta a_{1}-\frac{4}{5} \Delta b_{1}\right) \\
& \quad=-\frac{3}{25}\left(\frac{\Delta a_{0}}{3}\right)+\frac{16}{25}\left(\frac{\Delta a_{0}-\Delta a_{1}-\Delta b_{1}}{4}\right)+\frac{12}{25}\left(\frac{\Delta a_{0}-3 \Delta a_{1}}{6}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left|\frac{\Delta a_{i 3}-2 \Delta a_{1}-\frac{4}{5} \Delta b_{1}}{5}\right| \\
& \quad \leqslant \frac{3}{25}\left|\frac{\Delta a_{0}}{3}\right| \div \frac{16}{25}\left|\frac{\Delta a_{0}-\Delta a_{1}-\Delta b_{1}}{4}\right| \div \frac{12}{25}\left|\frac{\Delta a_{0}-3 A a_{1}}{6}\right| \\
& \quad<\frac{16}{25}\left[\left|\frac{\Delta a_{0}}{3}\right|+\left|\frac{\Delta a_{0}-\Delta a_{1}-\Delta b_{1}}{4}\right|+\left|\frac{\Delta a_{0}-3 \Delta a_{1}}{6}\right|\right]
\end{aligned}
$$

Since for small $\varepsilon, 16 / 25 \cdot(1+\epsilon) /(1-\epsilon)<1$, the required inequality is satisfied and $r(x)=(6-2 x) /(3+x)$ is a best l_{1} approximation. However, $n(x)$ is not unique since $\check{r}(x)=(12-4 x) /(6-x)$ also provides a minimum.

The final example provides both a degenerate best rational l_{1} approximation and a best rational least-squares approximation which does not interpolare the approximated function at any point, although it has the required number of sign changes.

Example 2. Given the following data, find best l_{1} and l_{2} approximations by functions of the form $r(x)=\left(a_{0}+a_{1} x\right) /\left(1-b_{1} x\right)$:

x	0	1	2	3
f	1	2	0	1

Consider first the l_{1} approximation. The degenerate member $r(x)=1$ of the class R_{11} interpolates f at the two end points, and is a candidate for a minimum. Retaining previously used notation, with

$$
\tilde{r}(x)=\frac{1+\Delta a_{0}+\Delta a_{1} x}{1+\Delta b_{1} x}
$$

construct the table

$$
\begin{array}{cccccc}
x & f & r & \tilde{r} & E & \tilde{\tilde{E}} \\
\hline 0 & 1 & 1 & \frac{1+\Delta a_{0}}{1} & 0 & \Delta a_{0} \\
1 & 2 & 1 & \frac{1+\Delta a_{0}+\Delta a_{1}}{1+\Delta b_{1}} & -1 & -1+\frac{\Delta a_{0}+\Delta a_{1}-\Delta b_{1}}{1+\Delta b_{1}} \\
2 & 0 & 1 & \frac{1+\Delta a_{0}+2 \Delta a_{1}}{1+2 \Delta b_{1}} & 1 & 1+\frac{\Delta a_{0}+2 \Delta a_{1}-2 \Delta b_{1}}{1+2 \Delta b_{1}} \\
3 & 1 & 1 & \frac{1+\Delta a_{0}+3 \Delta a_{1}}{1+3 \Delta b_{1}} & 0 & \frac{\Delta a_{0}+3 \Delta a_{1}-3 \Delta b_{1}}{1+3 \Delta b_{1}}
\end{array}
$$

The function being tested is a minimum if for all sufficiently small Δa_{0}, $\Delta a_{1}, \Delta b_{1}$,

$$
\begin{aligned}
& \left|\frac{\Delta a_{0}+2 \Delta a_{1}-2 \Delta b_{1}}{1+2 \Delta b_{1}}-\frac{\Delta a_{0}-\Delta a_{1}-\Delta b_{1}}{1+\Delta b_{1}}\right| \\
& \leqslant\left|\Delta a_{0}\right|+\left|\frac{\Delta a_{0}+3 \Delta a_{1}-3 \Delta b_{1}}{1+3 \Delta b_{1}}\right|
\end{aligned}
$$

Choose Δb_{1} so that $\left|\Delta b_{1}\right|<1 / 10$. Then

$$
\begin{aligned}
& \left|\frac{\Delta a_{0}+2 \Delta a_{1}-2 \Delta b_{1}}{1+2 \Delta b_{1}}-\frac{\Delta a_{0}+\Delta a_{1}-\Delta b_{1}}{1+\Delta b_{1}}\right| \\
& \quad=\frac{\left|\Delta a_{1}-\Delta b_{1}-\Delta a_{0} \Delta b_{1}\right|}{\left|1+2 \Delta b_{1}\right| \cdot\left|1+\Delta b_{1}\right|} \\
& \quad<3 \cdot \frac{\left|1+2 \Delta b_{1}\right| \cdot\left|1+\Delta b_{1}\right|}{\left|1+3 \Delta b_{1}\right|} \cdot \frac{\left|\Delta a_{1}-\Delta b_{1}-\Delta a_{0} \Delta b_{1}\right|}{\left|1+2 \Delta b_{1}\right| \cdot\left|1+\Delta b_{1}\right|} \\
& \quad=\frac{3\left|\Delta a_{1}-\Delta b_{1}-\Delta a_{0} \Delta b_{1}\right|}{\left|1+3 \Delta b_{1}\right|}=\left|\frac{\Delta a_{0}+3 \Delta a_{1}-3 \Delta b_{1}}{1+3 \Delta b_{1}}-\Delta a_{0}\right| \\
& \quad \leqslant\left|\frac{\Delta a_{0}+3 \Delta a_{1}-3 \Delta b_{1}}{1+3 \Delta b_{1}}\right|+\left|\Delta a_{0}\right|
\end{aligned}
$$

The inequality of the test is satisfied and thus $r(x)=1$ is a local minimum which provides an example of a degenerate best rational l_{1} approximation. The least-squares problem for the same data is that of finding $r(x)=$ $\left(a_{0}+a_{1} x\right) /\left(1+b_{1} x\right)$ which minimizes $S=\sum_{i}\left(r_{i}-f_{i}\right)^{2}$. The equations which must be satisfied by a_{0}, a_{1}, b_{1} in this case are

> (i) $\sum_{i} 2\left[\frac{a_{0}+a_{1} x_{i}}{1+b_{1} x_{i}}-f_{i}\right] \cdot\left[\frac{1}{1+b_{1} x_{i}}\right]=0$
> (ii) $\sum_{i} 2\left[\frac{a_{0}+a_{1} x_{i}}{1+b_{1} x_{i}}-f_{i}\right] \cdot\left[\frac{x_{i}}{1+b_{1} x_{i}}\right]=0$
> (iii) $\sum_{i} 2\left[\frac{a_{0}+a_{1} x_{i}}{1+b_{1} x_{i}}-f_{i}\right] \cdot\left[\frac{-x_{i}\left(a_{0}+a_{1} x_{i}\right)}{\left(1+b_{1} x_{i}\right)^{2}}\right]=0$.

These equations are satisfied by $a_{0}=13 / 10, a_{1}=-\frac{1}{5}$ and $b_{1}=0$. The function $r(x)=13 / 10-\frac{1}{5} x$ is a member of the class R_{11} having the following table of values:

x	$r(x)$	$f(x)$	$E(x)$	E^{2}
0	$\frac{13}{10}$	1	$\frac{3}{10}$	$\frac{9}{100}$
1	$\frac{11}{10}$	2	$-\frac{9}{10}$	$\frac{81}{100}$
2	$\frac{9}{10}$	0	$\frac{9}{10}$	$\frac{81}{100}$
3	$\frac{7}{10}$	1	$-\frac{3}{10}$	$\frac{9}{100} \sum E_{2}^{2}=\frac{9}{5}$.

The second derivatives required to test this for a minimum have been calculated as follows: $\delta^{2} S / \delta a_{0}{ }^{2}=8 ; \delta^{2} S / \delta a_{3} \delta a_{1}=12: \delta^{2} S / \delta a_{0} \delta b_{1}=-10$; $\delta^{2} S / \delta a_{1}{ }^{2}=28 ; \delta^{2} S / \delta a_{1} \delta b_{1}=-22 ; \delta^{2} S / \delta b_{1}{ }^{2}=19.16$. The matrix

$$
\left(\begin{array}{rrl}
8 & 12 & -10 \\
12 & 28 & -22 \\
-10 & -22 & 19.26
\end{array}\right)
$$

is positive definite and thus the function $f(x)$ that has been found is a minimum. It does not interpolate f at any point; however, it does have three sign changes.

References

1. C. B. DUNHAM, Degeneracy in mean nonlineai approximation, J. Approximation Theory 9 (1973), 307-312.
2. C. B. Dunham, Best discrete mean rational approximation, Aequationes Moth. is (1974), 107-110.
3. C. B. Dunham, Nonlinear mean-square approximation on finite sets, SIAM J. Numer. Anal. 12 (1975), 105-110.
4. G. Lamprechi, Zur Mehrdeutigkeit bei der Approximationen in der L_{ν}-Norm mit Hife rationaler Funktionen, Computing 5 (1970), 349-355.

[^0]: * Prepared for publication by C. B. Dunham, Computer Science Depariment, University of Western Ontario, London, Ontario N6A 5B9, Canada.
 \dagger Deceased.

